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Abstract :  This study describes the numerical evaluation of the transient and steady state 
characteristics of a magnetothermal wind created by the Kelvin force inside the bore space of a 
super-conducting magnet. The model system designed to evaluate the present numerical 
computations is composed of two coaxial circular pipes with open ends. The outer pipe, acting as 
the cooling pipe, corresponds to the bore space of the super-conducting magnet, while the inner 
pipe, acting as the heating pipe, is installed inside this bore space. The vertical magnetic 
gradient generated in the bore space as a source of the Kelvin force was replaced by that 
generated by the electric current circulating within the circular electric coil. The computed 
results indicated that the generation direction, the flow rate, and the flow pattern of the 
magnetothermal wind strongly depended on the position of the circular electric coil. For instance, 
when the circular electric coil was placed at the lower end of the heating region, the free 
convection was accelerated by the Kelvin force and an upward magnetothermal wind with a 
maximum flow rate was created. On the other hand, when the circular electric coil was placed at 
the upper end of the heating region, the free convection was suppressed by the Kelvin force and a 
downward magnetothermal wind was created. 
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1. Introduction 
The Kelvin force (Gray et al., 2001) or magnetizing force (Ozoe, 2005) is a body force generated under 
an inhomogeneous magnetic field. The generation of this force inside the bore space of a 
super-conducting magnet has produced many interesting phenomena relevant to various fields such 
as chemistry, biology, and engineering.  For instance, Braithwaite et al. (1991) reported the control of 
thermal convection in a shallow liquid layer with a paramagnetic property heated from below and 
cooled from above installed inside a super-conducting magnet with a bore space of 0.12 m in diameter.  
Berry and Geim (1997) succeeded in levitating a frog inside a super-conducting magnet with a bore 
space of 0.03 m in diameter. Tagami et al. (1999) succeeded in solidifying magnetically levitated 
water inside a hybrid magnet with a bore space of 0.052 m in diameter. Our interest is that the 
Kelvin force can be utilized to control the heat transfer rate of a paramagnetic fluid (e.g., Bai et al., 
1999; Tagawa et al., 2001; Kaneda et al., 2002) or a diamagnetic fluid (e.g., Kitazawa et al., 2001; 
Tagawa et al., 2003). 

Uetake et al. (2000) demonstrated that a Kelvin force induced a magnetothermal wind from a 
vertical open pipe which had a heating region installed inside a super-conducting magnet with a bore 
space of 0.1 m in diameter. They measured the temperature distributions of the magnetothermal 
wind in the pipe and calculated the average velocity of the magnetothermal wind based on the theory 
of Hargen-Poiseuille viscous flow. 
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However, in order to more thoroughly understand magnetothermal wind and to consider its 
possible engineering applications, a visualization of magnetothermal wind and the elucidation of its 
transient and steady state characteristics will be needed. In the present study, therefore, numerical 
computations were performed in reference to the model system upon which the experimental setup of 
Uetake et al. was based. 

2. Governing Equations 
Air shows a paramagnetic property since the absolute value of the mass magnetic susceptibility of 
paramagnetic oxygen gas is about 250 times that of diamagnetic nitrogen gas at room temperature.  
It is a feature of paramagnetic fluids that their mass magnetic susceptibilities χ  are inversely 
proportional to their absolute temperature, a relation known as Curie’s law, as seen in Eq. (1). 
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where C  is the Curie constant and θ  is the absolute temperature. 

In the following we show the derivation of the momentum equation including Kelvin force with 
the temperature dependence of the mass magnetic susceptibility of Eq. (1) as an external force term 
in addition to the buoyant force term. Equation (2) is the Kelvin force acting on electrically 
non-conducting fluid under an inhomogeneous magnetic field (Bai et al., 1999): 
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where H  is the magnetic field intensity, ρ  is the density, and ξ  is the magnetic permeability.  The 
magnetic permeability can be expressed as seen in Eq. (3): 
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where 0�  is the magnetic permeability in a vacuum. Equation (2) can be rephrased with the 
magnetic induction ( )H�b 0=  and Eq. (3) as follows: 
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Equation (5) is the momentum equation including the Kelvin force of Eq. (4) as an external force: 
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At the isothermal state 0θ , there will be no convection.  Therefore, Eq. (5) becomes as follows: 
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Pressure p  can be represented by the summation of 0p  at the isothermal state of the reference 
temperature and 'p  at the perturbed state as seen in Eq. (7): 

 
'.ppp 0 +=  (7) 

 
Subtracting Eq. (6) from Eq. (5) gives 
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By a Taylor expansion around a static state, 
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Presuming an ideal gas, θρGp = , 
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where G  is the universal gas constant and β  is the volumetric coefficient of expansion.  From 
Curie’s law as seen in Eq. (1), 
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When Eqs. (9)-(12) are substituted in Eq. (8) with the Boussinesq approximation, we get Eq. (13): 
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where 0�  is the kinematic viscosity.  Although the constant physical properties were used in the 
present numerical computations, the temperature dependence of the mass magnetic susceptibility in 
the Kelvin force term and that of the density in the buoyant force term were considered.  Equation 
(13) is the final shape of the momentum equation including Kelvin force with the temperature 
dependence of the mass magnetic susceptibility. The following are the non-dimensionalized 
governing equations. Equations (14), (15) and (16) are the equation of continuity, the momentum 
equation with the Kelvin force term and the energy equation. 
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The distribution of magnetic induction as a source of the Kelvin force was replaced by that generated 
by the electric current circulating within the circular electric coil and was computed by Biot-Savart’s 
law in Eq. (17): 
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The following dimensionless variables were employed in the above dimensionless equations: 
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where a�  is the position vector on a circular electric coil, r�  is the position vector in the model system, 

hθ  is the temperature of the heating wall, cθ  is the temperature of the cooling wall, Ra  is the 
Rayleigh number, α  is the thermal diffusivity, Pr  is the Prandtl number, and M  is the ratio of 
Kelvin force to the gravitational force.  The reference values were defined as follows: 
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where inr  is the radius of the inner pipe and i  is the electric current in the circular electric coil. 

3. Model System and Computational Schemes 
Figure 1(a) shows our laboratory’s helium-free super-conducting magnet whose bore space is 0.1 m in 
diameter. Uetake et al. (2000) demonstrated that a Kelvin force induced a magnetothermal wind 
from an open vertical pipe which had a heating region installed inside the bore space of this 
super-conducting magnet. Therefore, the model system as seen in Fig. 1(b) was considered in 
reference to their experimental setup. The model system consists of two coaxial circular pipes with 
open ends. The outer pipe corresponds to the bore space of the super-conducting magnet. The inner 
pipe corresponds to the heating pipe installed inside this bore space. The outer pipe has a diameter 5 
times and a length 5/3 times those of the inner pipe and is cooled isothermally. The central region of the 
inner pipe is heated isothermally and the other region is thermally insulated. The vertical magnetic 
gradient generated in the bore space as a source of the Kelvin force was replaced by this one-turn 
electric coil. The black broken lines with the arrow show a circular electric coil and the electric current 
circulating within this coil. The coil diameter was set to be 16 times that of the inner pipe. In the 
present numerical computations, the circular electric coil was placed at seven different axial 
positions. The distribution of dimensionless magnetic induction in the system was computed by Eq. 
(17). The computed distribution almost satisfied the continuity of magnetic induction. Figure 1(c) 
shows a contour plot of grad(Bz)2 when the circular electric coil was placed at the middle of the 
heating region Z = (25/50)HZ. The axial component of the gradient of the square of magnetic 
induction grad(Bz)2 becomes zero at (R, Z) = (0, 25) and takes a maximum and a minimum value at (R, 
Z) = (0, 19) and (R, Z) = (0, 31), respectively.  
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The dimensionless governing equations were numerically solved using a finite difference 
method. Inertial terms were approximated by the higher-order up-wind scheme called the UTOPIA 
scheme (Taylor et al., 1981). The other terms were approximated using either a four-order or a 
second-order central difference method. The calculation algorithm of pressure term was solved using 
the HSMAC method (Hirt et al., 1975). The present numerical computations were carried out in the 
two-dimensional system by assuming axial symmetry within a pipe as a first research step. The 
domain within the model system was divided into small meshes of 100 in the radial direction and 250 
in the axial direction at uniform intervals.   
(a)                                                          (b)                                                  (c) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The present numerical computations were carried out under the following conditions: 
 

,

,

,

,

,

,

HZ
5
4ZHZ

5
3HZ,

5
2ZHZ

5
1HR,Rat0WU

R
T

HZ
5
3ZHZ

5
2HR,Rat0WU1,T

0,HZZ5HR,R0at0
Z
W

Z
U

Z
T

HZZ05HR,Rat0WU0,T

HZZ00,Rat0
R
T

R
WU

:conditionsBoundary
0�at0WUT:conditionsInitial

≤<<≤====
∂
∂

≤≤====

=<<=
∂
∂=

∂
∂=

∂
∂

≤≤====

<<==
∂
∂=

∂
∂=

====

 (20) 

 
where U , W , and T are the radial velocity, the axial velocity, and the temperature in the 
dimensionless value, respectively. 

4. Computed Results 
4.1 Transient Characteristic 
Figure 2 shows the transient temperature distribution of the free convection from τ = 0.06 to τ = 
0.39 for M  = 0, Ra  = 5000, and Pr  = 0.71. The dimensionless time interval is 0.03. By applying a 

Fig. 1. (a) Helium-free super-conducting magnet. (b) Model system. (c) Contour plot of grad(Bz)2

when the circular electric coil was placed at Z = (25/50) HZ. 
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thermal gradient, the free convection developed with time, i.e., the high-temperature fluid heated 
along the heating region of the inner pipe flowed out from the upper open end of the inner pipe due to 
the effect of the gravitational buoyant force alone. 

Figure 3 shows the transient temperature distribution of the upward magnetothermal wind 
created when the circular electric coil was placed at the lower end of the heating region Z = (20/50) 
HZ from τ = 0.02 to τ = 0.13 for M  = 2.5 ×  105, Ra  = 5000, and Pr  = 0.71. The dimensionless time 
interval is 0.01. By applying thermal and magnetic gradients, the high-temperature fluid heated 
along the heating region of the inner pipe was rapidly expelled from the upper open end of the inner 
pipe, i.e., the upward magnetothermal wind was created by both the Kelvin force and the 
gravitational buoyant force. 

Corresponding figures for the upward magnetothermal wind created when the circular electric 
coil was placed at the middle of the heating region Z = (25/50) HZ are shown in Fig. 4. By applying 
thermal and magnetic gradients, the high-temperature fluid heated along the heating region of the 
inner pipe initially stagnated near the heating region. Subsequently, this stagnated fluid was rapidly 
expelled from the upper open end of the inner pipe, i.e., again the upward magnetothermal wind was 
created by both the Kelvin force and the gravitational buoyant force. 

Corresponding figures for the downward magnetothermal wind created when the circular 
electric coil was placed at the upper end of the heating region Z = (30/50) HZ are shown in Fig. 5. By 
applying thermal and magnetic gradients, the high-temperature fluid heated along the heating 
region of the inner pipe was rapidly expelled from the lower open end of the inner pipe in spite of the 
gravitational field, i.e., the downward magnetothermal wind was created by both the Kelvin force 
and the gravitational buoyant force. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

         Fig. 2. Transient temperature distribution of the free convection. 

Fig. 3. Transient temperature distribution of the upward magnetothermal wind created when the 
circular electric coil was placed at Z = (20/50) HZ.



Akamatsu, M. and Higano, M. 
 
 

267

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.2 Steady State Characteristic 
Figure 6 shows the temperature distribution and radial profiles of the axial velocity at the ends of the 
inner pipe at the steady state. Figure 6(a) shows those of the free convection in Fig. 2. Figures 6(b) 
and 6(c) show those of the upward magnetothermal wind seen in Figs. 3 and 4, respectively. Figure 
6(d) shows those of the downward magnetothermal wind seen in Fig. 5. The thermal boundary layer 
of the magnetothermal wind became thinner than that of free convection since the high-temperature 
fluid was expelled at the faster speed by the Kelvin force. On the other hand, the axial velocity 
distribution of the magnetothermal wind showed not a Hargen-Poiseuille viscous flow but two sharp 
peaks. 

Corresponding figures for the magnetothermal wind created when the circular electric coil was 
placed at other axial positions are shown in Fig. 7. Figures 6(a) and 6(b) show those of the upward 
magnetothermal wind created when the circular electric coil was placed at Z = (10/50) HZ and Z = 
(15/50) HZ below the lower end of the heating region, respectively. Figures 6(c) and 6(d) show those of 
the downward magnetothermal wind created when the circular electric coil was placed at Z = (35/50) 
HZ and Z = (40/50) HZ above the upper end of the heating region, respectively. The magnetothermal 
wind created by the Kelvin force gradually weakened as the circular electric coil receded from the 
heating region.   

Figure 8 shows the flow rate at the ends of the inner pipe at the steady state for the 
magnetothermal wind created by the Kelvin force. It is confirmed that the flow rate balance in the 
system is maintained. The closed circle shows that of the magnetothermal wind seen in Figs. 6 and 7 

Fig. 4. Transient temperature distribution of the upward magnetothermal wind created when the 
circular electric coil was placed at Z = (25/50) HZ.

Fig. 5. Transient temperature distribution of the downward magnetothermal wind created when the 
circular electric coil was placed at Z = (30/50) HZ.
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for M  = 2.5×105, Ra  = 5000, and Pr  = 0.71. The open circle shows that of the magnetothermal 
wind for M  = 2.5×105, Ra  = 2500, and Pr  = 0.71. The flow rate of the upward magnetothermal 
wind seen in Fig. 6(b) became 3.1 times that of the free convection seen in Fig. 6(a) and 1.4 times that 
of the upward magnetothermal wind created when the circular electric coil was placed at Z = (20/50) 
HZ for M  = 2.5×105, Ra  = 2500, and Pr  = 0.71. It is considered that the critical axial position of the 
circular electric coil for creating the downward magnetothermal wind exists between Z = (25/50) HZ 
and Z = (30/50) HZ under the present numerical conditions. 

When the radius of the inner pipe is inr  = 0.01 m, the dimensional equivalence for air at 0.1013 
MPa and 300 K with 0�  = 3.09 ×  10-7 m3/kg is maxz )(b  = 9.87 T on the centerline for M  = 2.5 ×  105 
and the maximum temperature difference is 53.5 K for Ra  = 5000 and 26.8 K for Ra  = 2500. The 
reference value 0u  is about 2.2 ×  10-3 m/s. Therefore, the dimensional axial velocity of W  = 500 
corresponds to 1.1 m/s. The reference value 0t  is about 4.5 s. Therefore, the dimensional time of τ  = 
0.01 corresponds to 0.045 s. 

At present, the experiment is carried out applying our laboratory’s helium-free 
super-conducting magnet seen in Fig. 1(a) in order to prove these numerical results. 
 
(a)                                                                              (b)                               
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c)                                                                               (d) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Temperature distribution and radial profiles of the axial velocity at the ends of the inner pipe at 
the steady state. (a) Free convection in Fig. 2; (b) Upward magnetothermal wind in Fig. 3; (c) Upward 
magnetothermal wind in Fig. 4; (d) Downward magnetothermal wind in Fig. 5. 
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(a)                                                                              (b)                               
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c)                                                                               (d) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Temperature distribution and radial profile of the axial velocity at the ends of the inner pipe at 
the steady state for the upward or downward magnetothermal wind created when the circular electric 
coil was placed at (a) Z = (10/50) HZ, (b) Z = (15/50) HZ, (c) Z = (35/50) HZ, and (d) Z = (40/50) HZ.

Fig. 8. The flow rate at the ends of the inner pipe at the steady state for the magnetothermal wind 
created by the Kelvin force. 
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5. Conclusion 
In order to clarify the flow characteristic of the magnetothermal wind created by the Kelvin force 
inside the bore space of the super-conducting magnet and to consider its possible engineering 
applications, its visualization was performed by means of numerical computations.   

The mass magnetic susceptibility of a paramagnetic gas such as air is inversely proportional to 
its absolute temperature.  Therefore, the Kelvin force works on a high-temperature fluid with a small 
mass magnetic susceptibility as the repulsive force. On the other hand, the Kelvin force works on a 
low-temperature fluid with a large mass magnetic susceptibility as the attractive force. 

When the circular electric coil is placed at the middle of the heating region or below the middle 
of the heating region, an upward magnetothermal wind is created by the Kelvin force.  On the other 
hand, when the circular electric coil is placed above the middle of the heating region, a downward 
magnetothermal wind is created by the Kelvin force. 
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